585. 已知数列 $\left\{x_n\right\}$ 满足: $\ds x_1=\frac{1}{2}, x_{n+1}=\frac{1}{1+x_n}, n \in \mathbf{N}^*$, 求证: $\ds \left|x_2-x_1\right|+\left|x_3-x_2\right|+\cdots+\left|x_{n+1}-x_n\right|<\frac{1}{3}$.
证明:归纳证明:$\forall n \in \mN,\frac{1}{2} \le x_n \le \frac{2}{3}$
显然$n=1$成立
设$n$成立,$\frac{1}{2} \le x_n \le \frac{2}{3}$,则由$x_{n+1}=\frac{1}{1+x_n}$\[ \frac{1}{1+\frac{2}{3}} \le x_{n+1} \le \frac{1}{1+\frac{1}{2}}\]即有\[ \frac{1}{2}<\frac{3}{5} \le x_{n+1} \le \frac{2}{3} \]对$n+1$也成立.故原命题成立.
从而有$(1+x_n)(1+x_{n-1}) \ge \frac{9}{4}$\[ |x_{n+1}-x_n|=|\frac{1}{1+x_n}-\frac{1}{1+x_{n-1}}|=\frac{|x_n-x_{n-1}|}{(1+x_n)(1+x_{n-1})}\\ \le \frac{4}{9}|x_n-x_{n-1}| \]
结合$|x_2-x_1|=\frac{1}{6}$,可得\[ |x_{n+1}-x_n| \le (\frac{4}{9})^{n-1} \cdot \frac{1}{6} \]
求和可得\[ \sum_{k=1}^n |x_{k+1}-x_k| \le \sum_{k=1}^n (\frac{4}{9})^{n-1} \cdot \frac{1}{6} < \sum_{k=1}^\infty (\frac{4}{9})^{n-1} \cdot \frac{1}{6} =\frac{3}{10}<\frac{1}{3} \]