联赛,  自招强基

不等式型递推数列

阅读提示:
如果是移动端阅读,可能会发生公式截断的问题,需要将设备横屏变为宽屏模式才能正常阅读.毕竟数学内容不同于纯文字.
另外,网站采用mathjax渲染latex代码,qq或者微信内置浏览器第一次打开可能会只显示源码不作处理.需要退出后再次打开才能正确渲染,其他浏览器应无问题.

正项数列 $\left\{x_n\right\}$ 满足 $x_n+\frac{1}{x_{n+1}}<2, n \in \mN$
(1) 证明: $x_n<x_{n+1}$
(2) 证明: $1-\frac{1}{n}<x_n<1$


证明:(1) 均值不等式\[    x_{n+1}+\frac{1}{x_{n+1}} \ge 2 > x_n+\frac{1}{x_{n+1}}\]
故有$x_{n+1}>x_n$


(2) 若存在某个$x_k\ge 1$,那么由(1)可得$x_n>1,\forall n>k$
\begin{gather}    \forall n \ge k+1,0<x_n-1<\frac{x_{n+1}-1}{x_{n+1}}\\    \frac{1}{x_n-1}>\frac{x_{n+1}}{x_{n+1}-1}=1+\frac{1}{x_{n+1}-1},\frac{1}{x_{n+1}-1}<\frac{1}{x_{n}-1}-1\\    \forall j \in \mN,\frac{1}{x_{j+k+1}-1} \le \frac{1}{x_{k+1}-1}-j\end{gather}
取$j>\frac{1}{x_{k+1}-1}$,则$\frac{1}{x_{j+k+1}-1}<0,x_{j+k+1}<1$,矛盾
故对一切$k \in \mN,0<x_k<1$
\begin{gather}    1-x_n>\frac{1}{x_{n+1}}-1=\frac{1-x_{n+1}}{x_{n+1}}>0\\    \frac{1}{1-x_n}<\frac{x_{n+1}}{1-x_{n+1}}=\frac{1}{1-x_{n+1}}-1,\frac{1}{1-x_{n+1}}>\frac{1}{1-x_n}+1\\    \frac{1}{1-x_n}>\frac{1}{1-x_1}+n-1>n\\    1-\frac{1}{n}<x_n<1\end{gather}