阅读提示:
如果是移动端阅读,可能会发生公式截断的问题,需要将设备横屏变为宽屏模式才能正常阅读.毕竟数学内容不同于纯文字.
另外,网站采用mathjax渲染latex代码,qq或者微信内置浏览器第一次打开可能会只显示源码不作处理.需要退出后再次打开才能正确渲染,其他浏览器应无问题.
学校发的小题专练里的题目
12. 已知函数 $f(x)=2 \sin (\omega x+\varphi)+h$ 的最小正周期为 $\pi$, 若 $|f(x)|$ 在 $\left[0, \frac{\pi}{4}\right]$ 上的最大值为 $M$, 则 $M$ 的最小值为$\tk$
解:考虑$f(0)=2\sin\varphi +h,f(\frac{\pi}{8})=\sqrt{2}\sin\varphi+\sqrt{2}\cos\varphi+h,f(\frac{\pi}{4})=2\cos\varphi+h$
\begin{gather} 2M \ge |f(0)-f(\frac{\pi}{8})|=|(2-\sqrt{2})\sin\varphi-\sqrt{2}\cos\varphi|\\ 2M \ge |f(\frac{\pi}{4})-f(\frac{\pi}{8})|=|(2-\sqrt{2})\cos\varphi-\sqrt{2}\sin\varphi|\\ (2M)^2+(2M)^2 \ge |(2-\sqrt{2})\sin\varphi-\sqrt{2}\cos\varphi|^2+|(2-\sqrt{2})\cos\varphi-\sqrt{2}\sin\varphi|^2\\ =8-4\sqrt{2}-(4\sqrt{2}-4)\sin 2\varphi \ge 12-8\sqrt{2}\\ M \ge \frac{2-\sqrt{2}}{2}\end{gather}当$\varphi=\frac{3\pi}{4},h=-\frac{2+\sqrt{2}}{2}$取等