已知$x>0, y>0$,且$16 x^4+16 y^4+16 x^2 y^2-60 x^2-60 y^2+63=0$
求 $x+y$ 的取值范围.
考虑
\begin{align}
16(x+y)^4 =& 16(x^4+y^4+4x^3y+4xy^3+6x^2 y^2)\\
=& 16(x^4+x^2 y^2+y^4)+64xy(x^2+y^2)+80x^2 y^2\\
=& 60(x^2+y^2)-63+64xy(x^2+y^2)+80x^2 y^2\\
=& 60(x+y)^2+80x^2 y^2-120xy+64xy(x^2+y^2)-63\\
=& 60(x+y)^2+8xy[8(x^2+y^2)+10xy-15]\\
=& 60(x+y)^2+8xy \cdot 8(x+y)^2-8xy(6xy+15)\\
a =& x+y,b=xy \le \frac{a^2}{4}\\
16a^4-60a^2+63 =& 8b \cdot 8a^2-8b \cdot (6b+15)\\
\frac{16a^4-60a^2+63}{8} =& -6b^2+(8a^2-15)b
\end{align}
由判别式,左边恒正,故$8a^2-15>0$
又由均值不等式(或者配方)
\[\frac{16a^4-60a^2+63}{8} = -6b^2+(8a^2-15)b \le \frac{(8a^2-15)^2}{24}\]
化简得
\[(a^2-3)(4a^2-3) \ge 0\]
由于$\ds a^2>\frac{15}{8},4a^2-3>0$,故$a^2 \ge 3$
则$f(b)=-6b^2+(8a^2-15)b$的对称轴$\ds x_0=\frac{8a^2-15}{12} \ge \frac{a^2}{4}$
从而
\begin{gather}
\frac{16a^4-60a^2+63}{8} = f(b) \le f(\frac{a^2}{4})\\
\frac{16a^4-60a^2+63}{8} \le -6 \times \frac{a^4}{16}+(8a^2-15) \times \frac{a^2}{4}\\
(a^2-3)(a^2-7) \le 0\\
x+y=a \in [\sqrt{3},\sqrt{7}]
\end{gather}
当$\ds x=y=\frac{\sqrt{3}}{2},x=y=\frac{\sqrt{7}}{2}$可以分别取等