注意到$AD \perp EP \iff$ $E$是$\triangle APD$垂心 \begin{gather} AD \perp EP \iff AP \perp DE \iff AP //XD \\ \iff [PDX]=[ADX] \iff [FYX]+[DYX]=[ADX] \\ \iff \frac{1}{2}([XAY]-[XBY])+\frac{1}{2}([BXY]+[CXY])=[ADX]\\ \iff \frac{1}{2}([XAY]+[XCY])=[ADX]\end{gather}考虑到\[ [XAY]+[XCY]=[ACX]=2[ADX] \]结论显然成立