• 平面几何,  联赛

    2022韩国数学奥林匹克-第二轮-P4

    P4.给定非等边$\triangle ABC$,记其内心为$I$,内切圆分别切三边$BC$、$CA$、$AB$于$D$、$E$、$F$.令$P$为$AI$与$DF$的交点,$Q$为$BI$与$EF$的交点.证明:$PQ=CD$.

    解析:观察$PQ,CD$,可以猜测$PDQC$应该是个等腰梯形,而$Q$在$DF$中垂线上,所以应该有$FQCP$是平行四边形.到这里就应该想到一个引理了(但是这个引理文字叙述起来非常拗口).
    大约是12年的IMO考过,后面东南女奥也考过几回.
    对于本题而言,就是$Q$为$C$在$BI$上的垂足,$P$为$C$在$AI$上的垂足.而后稍微导一导就行了.


    证明:$\angle FQB=\angle AFE-\angle ABI=90^\circ-\frac{A}{2}-\frac{B}{2}=\frac{C}{2}=\angle ACI$
    故$EQCI$共圆,$\angle IQC=\angle IEC=90^\circ$
    考虑$DF \perp BQ$,于是$CQ//DF$
    同理$\angle CPI=90^\circ$(这其实意味着$IEQCPD$六点共圆),及$CP//EF$,于是$FQCP$是平行四边形.
    结合$QD=QF$就有$PDQC$是等腰梯形,对角线$PQ=CD$