Given is a real number $a \in (0,1)$ and positive reals $x_0, x_1, \ldots, x_n$ such that $\sum x_i=n+a$ and $\sum \frac{1}{x_i}=n+\frac{1}{a}$. Find the minimal value of $\sum x_i^2$. 给定实数$a \in (0,1)$,正实数$x_0,x_1,\dots,x_n$满足: \[ \sum_{i=0}^n x_i=n+a,\sum_{i=0}^n \frac{1}{x_i}=n+\frac{1}{a} \] 求$\sum_{i=0}^n x_i^2$的最小值
英文题目: An infinite sequence of positive integers $a_1, a_2, \dots$ is called $good$ if (1) $a_1$ is a perfect square, and (2) for any integer $n \ge 2$, $a_n$ is the smallest positive integer such that$$na_1 + (n-1)a_2 + \dots + 2a_{n-1} + a_n$$is a perfect square. Prove that for any good sequence $a_1, a_2, \dots$, there exists a positive integer $k$ such that $a_n=a_k$ for all integers $n \ge k$.